Enlisting Genomics to Understand Flu Evolution
ثبت نشده
چکیده
1512 normal enzyme. Then, they replaced the oxygen in question with a sulfur atom. The reaction didn’t work as well because, by the rules of chemistry, sulfur doesn’t like to bind to magnesium. But sulfur does like manganese and cadmium ions. So they replaced the magnesium with one of these other metal ions and measured the reaction. The researchers saw that these other metal ions restored (or “rescued”) enzymatic activity. In short, the enzyme needs a bond where the oxygen and the magnesium are, but the bond doesn’t have to be between oxygen and magnesium. As complicated as that is, plucking out one atom and trading it for another is itself a tricky business. Because most enzymes are made of stubborn amino acids and not nucleotides, atomic mutagenesis can be diffi cult. And usually when researchers have tried atomic mutagenesis, they’ve mutated the substrate (the molecule that the reaction acts upon) instead of the enzyme (the molecule that acts). Here, Piccirilli, Herschlag, and colleagues directed the applications of atomic mutagenesis to the molecule that does the work. To test that a specifi c oxygen in the intron binds to the magnesium ion, the researchers fi rst had to compile a short list of potential atoms to which the magnesium might bind. By combining literature data from structural models and functional studies with a random sprinkling of sulfur atoms in the intron to fi nd critical oxygen contacts, Piccirilli, Herschlag, and colleagues established a group of specifi c oxygen atoms to watch. They tried the metal rescue experiment with each of these oxygens, and the only enzyme rescued by the metal switch was the one in which they changed the C262 oxygen to a sulfur. Therefore, they concluded that this specifi c oxygen atom makes a critical contact with the magnesium ion. The strategy of atomic mutagenesis combined with metal ion rescue can be used to help understand the mechanism of other RNA and protein metalloenzymes.
منابع مشابه
Getting the flu: 5 key facts about influenza virus evolution
1 Center for Genomics & Systems Biology, Department of Biology, New York University, New York, New York, United States of America, 2 Tisch Cancer Institute, Departments of Genetics and Genomics, Medicine, Oncological Sciences, and Pathology, Icahn School of Medicine of Mt Sinai, New York, New York, United States of America, 3 Department of Epidemiology, College of Global Public Health, New York...
متن کاملComparative genomics of human stem cell factor (SCF)
Stem cell factor (SCF) is a critical protein with key roles in the cell such as hematopoiesis, gametogenesis and melanogenesis. In the present study a comparative analysis on nucleotide sequences of SCF was performed in Humanoids using bioinformatics tools including NCBI-BLAST, MEGA6, and JBrowse. Our analysis of nucleotide sequences to find closely evolved organisms with high similarity by NCB...
متن کاملFungal regulatory evolution: cis and trans in the balance.
Regulatory divergence is likely a major driving force in evolution. Comparative genomics is being increasingly used to infer the evolution of gene regulation. Ascomycota fungi are uniquely suited among eukaryotes for regulatory evolution studies, due to broad phylogenetic scope, many sequenced genomes, and tractability of genomic analysis. Here we review recent advances in the identification of...
متن کاملEvolutionary genetics of insect innate immunity
Patterns of evolution in immune defense genes help to understand the evolutionary dynamics between hosts and pathogens. Multiple insect genomes have been sequenced, with many of them having annotated immune genes, which paves the way for a comparative genomic analysis of insect immunity. In this review, I summarize the current state of comparative and evolutionary genomics of insect innate immu...
متن کاملComparative genomics of brain size evolution
Which genetic changes took place during mammalian, primate and human evolution to build a larger brain? To answer this question, one has to correlate genetic changes with brain size changes across a phylogeny. Such a comparative genomics approach provides unique information to better understand brain evolution and brain development. However, its statistical power is limited for example due to t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Biology
دوره 3 شماره
صفحات -
تاریخ انتشار 2005